151 research outputs found

    Analysis of residual dependencies of independent components extracted from fMRI data

    Get PDF
    Independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) data can be employed as an exploratory method. The lack in the ICA model of strong a priori assumptions about the signal or about the noise leads to difficult interpretations of the results. Moreover, the statistical independence of the components is only approximated. Residual dependencies among the components can reveal informative structure in the data. A major problem is related to model order selection, that is, the number of components to be extracted. Specifically, overestimation may lead to component splitting. In this work, a method based on hierarchical clustering of ICA applied to fMRI datasets is investigated. The clustering algorithm uses a metric based on the mutual information between the ICs. To estimate the similarity measure, a histogram-based technique and one based on kernel density estimation are tested on simulated datasets. Simulations results indicate that the method could be used to cluster components related to the same task and resulting from a splitting process occurring at different model orders. Different performances of the similarity measures were found and discussed. Preliminary results on real data are reported and show that the method can group task related and transiently task related components

    Data processing and wearable systems for effective human monitoring

    Get PDF
    The last few decades have seen an unrestrained diffusion of smart-integrated technologies that are extremely pervasive and customized based on humans’ environments and habits. Wearable and mobile technologies such as smartphones, smartwatches, lightweight sensors, textile-based support systems, flexible displays, and micro-cameras are now supplied with a significant amount of computational power, low-energy wireless communication, long-life battery, and large-memory storage that make them a valid platform for monitoring the everyday life of humans [1]. In this context, a large variety of new sensors are being developed to equip such well-established wearable and mobile technologies with the aim of continuous monitoring of physical behavior, emotional state, well-being, and health condition. Interestingly, the recently improved computational resources of mobile systems allow us to acquire, process, and communicate a large set of different information. Nevertheless, this confronts us with the chance and challenge of managing an impressive amount of heterogeneous data, including physiological signals, through new ad-hoc processing, synthesis methods, and big data analysis as well as ad-hoc experimental paradigms, system designs, and models

    A Smart Region-Growing Algorithm for Single-Neuron Segmentation From Confocal and 2-Photon Datasets

    Get PDF
    Accurately digitizing the brain at the micro-scale is crucial for investigating brain structure-function relationships and documenting morphological alterations due to neuropathies. Here we present a new Smart Region Growing algorithm (SmRG) for the segmentation of single neurons in their intricate 3D arrangement within the brain. Its Region Growing procedure is based on a homogeneity predicate determined by describing the pixel intensity statistics of confocal acquisitions with a mixture model, enabling an accurate reconstruction of complex 3D cellular structures from high-resolution images of neural tissue. The algorithm’s outcome is a 3D matrix of logical values identifying the voxels belonging to the segmented structure, thus providing additional useful volumetric information on neurons. To highlight the algorithm’s full potential, we compared its performance in terms of accuracy, reproducibility, precision and robustness of 3D neuron reconstructions based on microscopic data from different brain locations and imaging protocols against both manual and state-of-the-art reconstruction tools

    Gotta trace ‘em all: A mini-review on tools and procedures for segmenting single neurons toward deciphering the structural connectome

    Get PDF
    Decoding the morphology and physical connections of all the neurons populating a brain is necessary for predicting and studying the relationships between its form and function, as well as for documenting structural abnormalities in neuropathies. Digitizing a complete and high-fidelity map of the mammalian brain at the micro-scale will allow neuroscientists to understand disease, consciousness, and ultimately what it is that makes us humans. The critical obstacle for reaching this goal is the lack of robust and accurate tools able to deal with 3D datasets representing dense-packed cells in their native arrangement within the brain. This obliges neuroscientist to manually identify the neurons populating an acquired digital image stack, a notably time-consuming procedure prone to human bias. Here we review the automatic and semi-automatic algorithms and software for neuron segmentation available in the literature, as well as the metrics purposely designed for their validation, highlighting their strengths and limitations. In this direction, we also briefly introduce the recent advances in tissue clarification that enable significant improvements in both optical access of neural tissue and image stack quality, and which could enable more efficient segmentation approaches. Finally, we discuss new methods and tools for processing tissues and acquiring images at sub-cellular scales, which will require new robust algorithms for identifying neurons and their sub-structures (e.g., spines, thin neurites). This will lead to a more detailed structural map of the brain, taking twenty-first century cellular neuroscience to the next level, i.e., the Structural Connectome

    Assessing the quality of heart rate variability estimated from wrist and finger PPG: A novel approach based on cross-mapping method

    Get PDF
    The non-invasiveness of photoplethysmographic (PPG) acquisition systems, together with their cost-effectiveness and easiness of connection with IoT technologies, is opening up to the possibility of their widespread use. For this reason, the study of the reliability of PPG and pulse rate variability (PRV) signal quality has become of great scientific, technological, and commercial interest. In this field, sensor location has been demonstrated to play a crucial role. The goal of this study was to investigate PPG and PRV signal quality acquired from two body locations: finger and wrist. We simultaneously acquired the PPG and electrocardiographic (ECG) signals from sixteen healthy subjects (aged 28.5 ± 3.5, seven females) who followed an experimental protocol of affective stimulation through visual stimuli. Statistical tests demonstrated that PPG signals acquired from the wrist and the finger presented different signal quality indexes (kurtosis and Shannon entropy), with higher values for the wrist-PPG. Then we propose to apply the cross-mapping (CM) approach as a new method to quantify the PRV signal quality. We found that the performance achieved using the two sites was significantly different in all the experimental sessions (p < 0.01), and the PRV dynamics acquired from the finger were the most similar to heart rate variability (HRV) dynamics

    Parasympathetic-sympathetic causal interactions assessed by time-varying multivariate autoregressive modeling of electrodermal activity and heart-rate-variability

    Get PDF
    Objective: Most of the bodily functions are regulated by multiple interactions between the parasympathetic (PNS) and sympathetic (SNS) nervous system. In this study, we propose a novel framework to quantify the causal flow of information between PNS and SNS through the analysis of heart rate variability (HRV) and electrodermal activity (EDA) signals. Methods: Our method is based on a time-varying (TV) multivariate autoregressive model of EDA and HRV time-series and incorporates physiologically inspired assumptions by estimating the Directed Coherence in a specific frequency range. The statistical significance of the observed interactions is assessed by a bootstrap procedure purposely developed to infer causalities in the presence of both TV model coefficients and TV model residuals (i.e., heteroskedasticity). We tested our method on two different experiments designed to trigger a sympathetic response, i.e., a hand-grip task (HG) and a mental-computation task (MC). Results: Our results show a parasympathetic driven interaction in the resting state, which is consistent across different studies. The onset of the stressful stimulation triggers a cascade of events characterized by the presence or absence of the PNS-SNS interaction and changes in the directionality. Despite similarities between the results related to the two tasks, we reveal differences in the dynamics of the PNS-SNS interaction, which might reflect different regulatory mechanisms associated with different stressors. Conclusion: We estimate causal coupling between PNS and SNS through MVAR modeling of EDA and HRV time-series. Significance: Our results suggest promising future applicability to investigate more complex contexts such as affective and pathological scenarios

    Valence, Arousal, and Gender Effect on Olfactory Cortical Network Connectivity: a study using Dynamic Causal Modeling for EEG

    Get PDF
    The cortical network including the piriform (PC), orbitofrontal (OFC), and entorhinal (EC) cortices allows the complex processing of behavioral, cognitive, and context-related odor information and represents an access gate to the subcortical limbic regions. Among the several factors that influence odor processing, their hedonic content and gender differences play a relevant role. Here, we investigated how these factors influence EEG effective connectivity among the mentioned brain regions during emotional olfactory stimuli. To this aim, we acquired EEG data from twenty-one healthy volunteers, during a passive odor task of odorants with different valence. We used Dynamic Causal Modeling (DCM) for EEG and Parametric Empirical Bayes (PEB) to investigate the modulatory effects of odors’ valence on the connectivity strengths of the PC-EC-OFC network. Moreover, we controlled for the influence of arousal and gender on such modulatory effects. Our results highlighted the relevant role of the forward and backward PC-EC connections in odor’s brain processing. On the one hand, the EC-to-PC connection was inhibited by both pleasant and unpleasant odors, but not by the neutral one. On the other hand, the PC-to-EC forward connection was found to be modulated (posterior probability (Pp)>0.95) by the arousal level associated with an unpleasant odor. Finally, the whole network dynamics showed several significant gender-related differences (Pp>0.95) suggesting a better ability in odor discrimination for the female gender

    Cortical network and connectivity underlying hedonic olfactory perception

    Get PDF
    Objective. The emotional response to olfactory stimuli implies the activation of a complex cascade of events triggered by structures lying in the limbic system. However, little is known about how this activation is projected up to cerebral cortex and how different cortical areas dynamically interact each other. Approach. In this study, we acquired EEG from human participants performing a passive odor-perception task with odorants conveying positive, neutral and negative valence. A novel methodological pipeline integrating global field power (GFP), independent component analysis (ICA), dipole source localization was applied to estimate effective connectivity in the challenging scenario of single-trial low-synchronized stimulation. Main results. We identified the brain network and the neural paths, elicited at different frequency bands, i.e. θ (4-7Hz), α (8-12Hz) and β (13-30Hz), involved in odor valence processing. This brain network includes the orbitofrontal cortex (OFC), the cingulate gyrus (CgG), the superior temporal gyrus (STG), the posterior cingulate cortex/precuneus (PCC/PCu) and the parahippocampal gyrus (PHG). It was analyzed using a time-varying multivariate autoregressive model to resolve time-frequency causal interactions. Specifically, the OFC acts as the main node for odor perception and evaluation of pleasant and unpleasant stimuli, whereas no specific path was observed for a neutral stimulus. Significance. The results introduce new evidences on the role of the OFC during hedonic perception and underpin its specificity during the odor valence assessment. Our findings suggest that, after the odor onset different, bidirectional interactions occur between the OFC and other brain regions associated with emotion recognition/categorization and memory according to the stimulus valence. This outcome unveils how the hedonic olfactory network dynamically changes based on odor valence

    Functional connectome of arousal and motor brainstem nuclei in living humans by 7 Tesla resting-state fMRI

    Get PDF
    Brainstem nuclei play a pivotal role in many functions, such as arousal and motor control. Nevertheless, the connectivity of arousal and motor brainstem nuclei is understudied in living humans due to the limited sensitivity and spatial resolution of conventional imaging, and to the lack of atlases of these deep tiny regions of the brain. For a holistic comprehension of sleep, arousal and associated motor processes, we investigated in 20 healthy subjects the resting-state functional connectivity of 18 arousal and motor brainstem nuclei in living humans. To do so, we used high spatial-resolution 7 Tesla resting-state fMRI, as well as a recently developed in-vivo probabilistic atlas of these nuclei in stereotactic space. Further, we verified the translatability of our brainstem connectome approach to conventional (e.g. 3 Tesla) fMRI. Arousal brainstem nuclei displayed high interconnectivity, as well as connectivity to the thalamus, hypothalamus, basal forebrain and frontal cortex, in line with animal studies and as expected for arousal regions. Motor brainstem nuclei showed expected connectivity to the cerebellum, basal ganglia and motor cortex, as well as high interconnectivity. Comparison of 3 Tesla to 7 Tesla connectivity results indicated good translatability of our brainstem connectome approach to conventional fMRI, especially for cortical and subcortical (non-brainstem) targets and to a lesser extent for brainstem targets. The functional connectome of 18 arousal and motor brainstem nuclei with the rest of the brain might provide a better understanding of arousal, sleep and accompanying motor functions in living humans in health and disease
    • …
    corecore